Portal to the Lesser White-fronted Goose

- by the Fennoscandian Lesser White-fronted Goose project

Literature type: Scientific

Journal: Conservation Genetics

Volume: 8 , Pages: 197-207.

DOI: 10.1007/s10592-006-9162-5

Language: English

Full reference: Ruokonen, M., Andersson, A.-C. & Tegelström, H. 2007. Using historical captive stocks in conservation. The case of the lesser white-fronted goose. Conservation Genetics 8: 197-207. https://www.dx.doi.org/10.1007/s10592-006-9162-5

Keywords: Hybrid, Captive, Supplementation, Reintroduction, Lesser white-fronted goose, Anser erythropus

Abstract:

Many captive stocks of economically or otherwise valuable species were established before the decline of the wild population. These stocks are potentially valuable sources of genetic variability, but their taxonomic identity and actual value is often uncertain. We studied the genetics of captive stocks of the threatened lesser white-fronted goose Anser erythropus maintained in Sweden and elsewhere in Europe. Analyses of mtDNA and nuclear microsatellite markers revealed that 36% of the individuals had a hybrid ancestry. Because the parental species are closely related it is unlikely that our analyses detected all hybrid individuals in the material. Because no ancestral polymorphism or introgression was observed in samples of wild populations, it is likely that the observed hybridisation has occurred in captivity. As a consequence of founder effect, drift and hybridisation, captive stocks were genetically differentiated from the wild populations of the lesser white-fronted goose. The high level of genetic diversity in the captive stocks is explained at least partially by hybridisation. The present captive stocks of the lesser white-fronted goose are considered unsuitable for further reintroduction, or supplementation: hybridisation has involved three species, the number of hybrids is high, and all the investigated captive stocks are similarly affected. The results highlight the potential shortcomings of using captive-bred individuals in supplementation and reintroduction projects, when the captive stocks have not been pedigreed and bred according to conservation principles.

Literature type: Scientific

Journal: Conservation Genetics

Volume: 1 , Pages: 277-283.

DOI: 10.1023/A:1011509922762

Language: English

Full reference: Ruokonen, M., Kvist, L., Tegelström, H., Lumme, J. 2000. Goose hybrids, captive breeding and restocking of the Fennoscandian populations of the Lesser White-fronted goose (Anser erythropus). Conservation Genetics 1: 277-283. https://www.dx.doi.org/10.1023/A:1011509922762

Keywords: captive stock, hybrids, mitochondrial DNA, reintroduction

Abstract:

The lesser white-fronted goose (Anser erythropus) is the most threatened of the Palearctic goose species with a declining population trend throughout its distributional range. The current estimate of the Fennoscandian subpopulation size is 30–50 breeding pairs, whereas it still numbered more than 10 000 individuals at the beginning of the last century. Reintroduction and restocking have been carried out in Sweden and Finland using captive lesser white-fronted goose stock with unknown origins. We have carried out a study of the genetic composition of captive-bred stock by sequencing a 221 bp hypervariable fragment of the mitochondrial DNA (mtDNA) control region from 15 individuals from the Hailuoto farm, Finland. Two out of the three maternal lineages detected in the captive stock are also present in wild populations. The third maternal lineage among the captive lesser white-fronted geese originates from the closely related greater white-fronted goose (Anser albifrons). None of the investigated wild lesser white-fronted goose individuals carried themtDNA of the greater white-fronted goose. The presence of greater white-fronted goose mtDNA in the lesser white-fronted goose captive stock suggests that hybridization has occurred during captive propagation.

Number of results: 2