Portal to the Lesser White-fronted Goose

- by the Fennoscandian Lesser White-fronted Goose project

Literature type: Thesis

Language: English

External Link:

Full reference: Markkola, J. 2022. Ecology and conservation of the Lesser White-fronted Goose Anser erythropus. , PhD thesis, Acta Universitatis Ouluensis. A Scientiae Rerum Naturalium 770. Faculty of Science, University of Oulu, Finland.

Keywords: spring arrival, Anser erythropus, Anser fabalis, breeding schedule, habitat, diet selection, meadow management, population genetic structure, Finland

Abstract:

I studied the rare and threatened lesser white-fronted goose (Anser erythropus), abbreviated LWfG in 1989–1996 in sub-arctic Finnish Lapland (I). The studied subpopulation consisted of 2–15 breeding pairs annually. A total of 30 broods were observed with an average of 2.9 goslings per brood. The 1st year survival of tagged 10 geese was low. Satellite locations, recoveries and resightings were received from NW Russia, Kazakhstan and the Azov Sea area. Cold spells had a negative, and the sum of effective temperatures by 5 July a positive influence on reproduction. Habitat selection (II) was studied in the same area. LWfG preferred the vicinity of water, flat close-range landscape, low forest height and intermediate relative altitudes. LWfG aggregated in the vicinity of conspecifics within the preferred habitats. The averaged RSF model assigned observation and random points correctly with 83.4% success. Locations of historical observations of LWfG matched the predicted distribution of breeding sites. (III) Spring migration patterns on the Bothnian Bay coast of LWfG were examined in 1907–1916 and 1949–2014 and the taiga bean goose (Anser fabalis fabalis) in 1975–2014. Arrival of the short-distance migrant A. fabalis advanced more and earlier than the long-distance migrant A. erythropus, 10.9 days since late 1980’s vs. 5.3 days since the beginning of the 2000’s. In the LWfG, the best model for explaining variation in timing included global and local temperatures, in A. fabalis global and local temperatures and winter NAO. Increasing global temperatures seem to explain trends in both. In the spring staging places of the Bothnian Bay almost all dietary items of the LWfG were Monocotyledons, mostly grasses growing in extensive sea-shore meadows (IV). Only Phragmites, Festuca and possibly Triglochin palustris were preferred. Lesser White-fronts preferred extensive natural meadows. Mowing and grazing benefit the restoration of habitats. Genetic structuring of the LWfG was examined in its whole distribution area from Fennoscandia to East Asia (V). A fragment of the control region of mtDNA was sequenced from 110 individuals. 15 mtDNA haplotypes were assigned to two mtDNA lineages. Molecular variance showed significant structuring among populations: the main western in north-western Russia – Central Siberia, the main eastern in East Asia and the Nordic one, which earns a status as an independent management unit.

Literature type: Scientific

Journal: Ornis Fennica

Volume: 97 , Pages: 1-18.

Language: English

Download:

Full reference: Markkola, J.A. & Karvonen, R.T. 2020. Changing environmental conditions and structure of a breeding population of the threatened Lesser White-fronted Goose (Anser erythropus L.). Ornis Fennica 97: 1-18.

Keywords: breeding, broods, mortality, hunting, migration, lemmings, voles

Abstract:

Migratory birds breeding at high latitudes face challenges in relation to timing of breeding vs. annual weather, climate change, and predator abundance. Hunting pressure along migration routes and wintering quarters forms an additional challenge.We studied population structure and interaction with environmental factors in a small population of threatened Lesser White-fronted Geese Anser erythropus, living in sub-arctic zone in Lapland in 1989–1996. Thereafter the population disappeared. The population comprised 2–15 breeding pairs plus 0–12 non-breeders, which left in June to moult elsewhere. 30 broods were observed (0–8 annually) with an average number of 2.9 goslings. Of the 3 satellite tagged plus 7 ringed geese at least 3were shot and altogether 4 killed during the first year. Only 2 were seen alive next year or later. Laying started on average 4 June (21May – 13 June) and hatching took place 2 July (21 June–10 July) with an intra-seasonal clutch size decline. Variation in nesting initiation was not explained by local phenology, but instead by the date of staging peak in the last pre-breeding staging area 600 km south. Reproduction was affected negatively by cold spells and positively by the sum of daily effective temperatures by 5 July. Vole populations were low and a real cycle missing. No effect of reindeer abundance or human presence on reproduction could be found.

Literature type: Scientific

Journal: Bird Conservation International

Volume: 26 , Pages: 397-417.

DOI: 10.1017/S0959270915000386

Language: English

Full reference: Jia, Q., Koyama, K., Choi, C.-Y., Kim, H.-J., Cao, L., Liu, G. & Fox, A. 2016. Population estimates and geographical distributions of swans and geese in East Asia based on counts during the non-breeding season. Bird Conservation International 26: 397-417. https://www.dx.doi.org/10.1017/S0959270915000386

Keywords: Population size, survey, South Korea, Japan, China,

Abstract:

For the first time, we estimated the population sizes of two swan species and four goose species from observations during the non-breeding period in East Asia. Based on combined counts from South Korea, Japan and China, we estimated the total abundance of these species as follows: 42,000–47,000 Whooper Swans Cygnus cygnus; 99,000–141,000 Tundra Swans C. columbianus bewickii; 56,000–98,000 Swan Geese Anser cygnoides; 157,000–194,000 Bean Geese A. fabalis; 231,000–283,000 Greater White-fronted Geese A. albifrons; and 14,000–19,000 Lesser White-fronted Geese A. erythropus. While the count data from Korea and Japan provide a good reflection of numbers present, there remain gaps in the coverage in China, which particularly affect the precision of the estimates for Bean, Greater and Lesser White-fronted Geese as well as Tundra Swans. Lack of subspecies distinction of Bean Geese in China until recently also limits our ability to determine the true status of A. f. middendorffii there, but all indications suggest this population numbers around 18,000 individuals and is in need of urgent attention. The small, highly concentrated and declining numbers of Lesser White-fronted Geese give concern for this species, as do the major declines in Greater White-fronted Geese in China (in contrast to numbers in Japan and Korea, considered to be a separate flyway). In the absence of any demographic data, it is impossible to interpret the causes of these changes in abundance. Improved monitoring, including demographic and tracking studies are required to provide the necessary information to retain populations in favourable conservation status.

Literature type: Report

Language: English

Download:

Full reference: Morozov, V.V., Aarvak, T. & Øien, I.J. 2015. Satellite tracking of Lesser White-fronted Geese from the East-European tundra in Russia in 2014. , Norsk Ornitologisk Forening - Report 1-2015. 14 pp.

Keywords: satellite transmitter tracking, Russia, Azerbaijan, Kazakhstan, breeding survey

Literature type: Book Chpt

Language: English

Full reference: Saurola, P., Valkama, J. & Velmala, W. 2013. Lesser White-fronted Goose. Pp. 106-108 in:The Finnish bird ringing atlas. Vol.1. , Finnish museum of Natural History and Ministry of Environment, Helsinki - LWfG

Keywords: ringing, recoveries, recovery, occurrence, Finlnad, breeding

Literature type: General

Journal: Goose Bulletin

Volume: 17 , Pages: 23-25.

Language: English

Download:

Full reference: Mineev, O.Y. & Mineev, Y.N. 2013. New breeding area for the Lesser White-fronted GooseAnser erythropus in the Bolshezemelskaya tundra. Goose Bulletin: 17, 23-25.

Keywords: Bolshezemelskaya tundra, Nenets, broods, breeding, peregrine falcon, Russia

Literature type: General

Language: English

Download:

Full reference: Degtyaryev, V.G., Egorov, N.N., Ochlopkov, I.I., Oleinikov, O.B. & Tomshin, M.D. 2013. Lesser White-fronted Goose in the Lena and Olenek Rivers catchment, Siberia. Pp. 60-61 in Young, G, M Williams, B Hughes & C Hall (eds). 2013. TWSG News, Bulletin of the IUCN-SSC/Wetlands International Threatened Waterfowl Specialist Group, No. 16. Wildfowl & Wetlands Trust, Slimbridge, UK.

Keywords: breeding, distribution, numbers, Siberia, status, Russia

Literature type: Scientific

Journal: Wildfowl

Volume: 61 , Pages: 110-120.

Language: English

Download:

Full reference: Solovieva, D. & Vartanyan, S. 2011. Lesser White-fronted Goose Anser erythropus: good news about the breeding population in west Chukotka, Russia. Wildfowl 61: 110-120.

Keywords: occurence, status

Literature type: Report

Language: English

Download:

Full reference: Lee, R., Cranswick, P.A. Hilton, G.M. & Jarrett, N.S. 2010. Feasibility study for a re-introduction/supplementation programme for the Lesser White-fronted Goose Anser erythropus in Norway. , WWT Report to the Directorate for Nature Management, Norway. 130pp.

Keywords: reintroduction, translocation, population, mortality, feasibility, re-introduction, supplementation, Norway, Fennoscandia, life-history, captive breeding, zoo,

Literature type: Rep.article

Language: English

Download:

Full reference: Sulkava, P., Karvonen, R. & Tolvanen, P. 2009. Monitoring of the late spring staging sites and breeding areas of Lesser White-fronted Goose in Finnish and Norwegian Lapland in 2004–2008. , In: Tolvanen, P., Øien, I.J. & Ruokolainen, K. (eds.). Conservation of Lesser White-fronted Goose on the European migration route. Final report of the EU LIFE-Nature project 2005–2009. WWF Finland Report 27 & NOF Rapportserie Report No 1-2009: pp. 36-39.

Keywords: monitoring, EU-Life, annual report, Fennoscandian, Norway, Finland

Number of results: 42