Portal to the Lesser White-fronted Goose

- by the Fennoscandian Lesser White-fronted Goose project

Literature type: Scientific

Journal: Frontiers in microbiology

Volume: 13 , Pages: 1081468

DOI: 10.3389/fmicb.2022.1081468

Language: English

External Link:

Download:

Full reference: Liu, G., Xu, N., & Feng, J. 2023. Metagenomic analysis of gut microbiota and antibiotic-resistant genes in Anser erythropus wintering at Shengjin and Caizi Lakes in China. Frontiers in microbiology 13: 1081468 https://www.dx.doi.org/10.3389/fmicb.2022.1081468

Keywords: Shengjin and Caizi Lakes, China, antibiotic-resistant genes (ARGs), gut microbiota, metagenomics

Abstract:

Migratory birds are the primary source and reservoir of antibiotic-resistant genes (ARGs) related to their gut microbes. In this study, we performed metagenomics analysis to study the gut microbial communities and ARGs of Anser erythropus wintering at Shengjin (SJ) and Caizi (CZ) Lakes. The results showed that bacteria, fungi, viruses, and archaea were the dominant gut microbes. Principal component analysis (PCA) indicated that the microbiota compositions significantly differed between the two populations. Diet may be the most crucial driver of the gut microbial communities for A. erythropus. This species fed exclusively on Poaceae spp. at Shengjin Lake and primarily on Carex spp. at Caizi Lake. Tetracycline, macrolide, fluoroquinolone, phenicol, and peptide antibiotics were the dominant resistant types. ARGs had a significantly higher abundance of operational taxonomic units (OTUs) in the Shengjin Lake samples than in Caizi Lake samples. PCA indicated that most Shengjin Lake samples significantly differed in gut microbiota composition from those obtained at Caizi Lake. This difference in gut microbiota composition between the two lakes' samples is attributed to more extensive aquaculture operations and poultry farms surrounding Shengjin Lake than Caizi Lake. ARGs-microbes associations indicated that 24 bacterial species, commonly used as indicators of antibiotic resistance in surveillance efforts, were abundant in wintering A. erythropus. The results revealed the composition and structural characteristics of the gut microbiota and ARGs of A. erythropus, pointing to their high sensitivities to diet habits at both lakes. This study also provides primary data for risk prevention and control of potential harmful pathogens that could endanger public health and therefore are of major significance to epidemiological and public health.

Literature type: Scientific

Journal: Wildfowl

Volume: SpecIs 6 , Pages: 206–243.

Language: English

External Link:

Download:

Full reference: Ao, P., Wang, X., Solovyeva, D., Meng, F., Ikeuchi, T., Shimada, T., Park, J., Gao, D., Liu, G., Hu, B., Natsagdorj, T., Zheng, B., Vartanyan, S., Davaasuren, B., Zhang, J., Cao, L. & Fox, A. 2021. Rapid decline of the geographically restricted and globally threatened Eastern Palearctic Lesser White-fronted Goose Anser erythropus. Wildfowl SpecIs 6: 206–243.

Keywords: abundance, key sites, migration routes, population trends, telemetry tracking, China, Asia

Abstract:

The Lesser White-fronted Goose Anser erythropus, which breeds across northern Eurasia from Norway to Chukotka, is globally threatened and is currently classified as Vulnerable by the International Union for Conservation of Nature. The Eastern Palearctic population of the species was thought to breed in arctic Russia, from east of the Taimyr Peninsula to Chukotka, and to winter in East Asia, but its precise status, abundance, breeding and wintering ranges, and migration routes were largely unknown, reducing the effectiveness of conservation efforts. In this paper, we combined results from satellite tracking, field surveys, a literature review and expert knowledge, to present an updated overview of the winter distribution and abundance of Lesser White-fronted Geese in the Eastern Palearctic, highlighting their migration corridors, habitat use and the conservation status of the key sites used throughout the annual cycle. Improved count coverage puts the Eastern Palearctic Lesser White-fronted Geese population at c. 6,800 birds in 2020, which represents a rapid and worrying decline since the estimate of 16,000 in 2015, as it suggests at least a halving of numbers in just five years. East Dongting Lake (Hunan Province) in China is the most important wintering site for the species in East Asia, followed by Poyang Lake (Jiangxi Province) and Caizi Lake (Anhui Province), with one key wintering site in Miyagi County in Japan. Satellite tracking showed that eight individuals captured during summer on the Rauchua River, Chukotka, Russia wintered in the middle and lower reaches of the Yangtze River floodplain in China. Their migration speed was slower in spring than in autumn, mainly because of longer stopover duration at staging sites in spring. The tracked geese mainly used cultivated land on migration stopovers (52% in spring; 45% in autumn), tundra habitat in summer (63%), and wetlands (66%) in winter. Overall, 87% of the GPS fixes were in protected areas during the winter, far greater than in spring (37%), autumn (28%) and summer (7%). We urge more tracking of birds of differing wintering and breeding provenance to provide a fuller understanding of the migration routes, staging sites and breeding areas used by the geese, including for the birds wintering in Japan. The most urgent requirement is to enhance effective conservation and long-term monitoring of Lesser White-fronted Geese across sites within China, and particularly to improve our understanding of the management actions needed to maintain the species. Collaboration between East Asian countries also is essential, to coordinate monitoring and to formulate effective protection measures for safeguarding this population in the future.

Literature type: Scientific

Journal: Ecology and evolution

Volume: 10 , Pages: 5281–5292

DOI: 10.1002/ece3.6272

Language: English

External Link:

Download:

Full reference: Zhang, P., Zou, Y. A., Xie, Y., Zhang, S., Chen, X., Li, F., Deng, Z., Zhang, H., & Tu, W. 2020. Hydrology-driven responses of herbivorous geese in relation to changes in food quantity and quality. Ecology and evolution 10: 5281–5292 https://www.dx.doi.org/10.1002/ece3.6272

Keywords: Dongting Lake, China, diet, food shortage, habitat selection

Abstract:

East Dongting Lake is a Ramsar site and a particularly important wintering ground for herbivorous geese along the East Asian-Australasian Flyway. The operation of the Three Gorges Dam has changed the water regime and has a significant impact on wetland ecosystems downstream. We studied the responses of two sympatric herbivorous goose species, the Lesser white-fronted goose Anser erythropus and Bean goose Anser fabalis, to habitat change by investigating their food conditions, habitat selection, and diet composition in the wintering periods of 2016/2017 and 2017/2018, which had early and late water recession, respectively. It was expected that the contrasting water regimes would result in different food conditions and geese responses. The results showed that the food quality and quantity differed significantly between winters. As responses to the high-quantity/low-quality food during 2016/2017, more geese switched to feeding on mudflat and exploited plants such as dicotyledons and moss. The tall swards of Carex spp. (dominant plants in the meadow) that developed during the first growing season decreased the food accessibility during the second growing season and hindered the exploitation of newly generated shoots by the geese, which was further confirmed by our clipping control experiment. Nearly all the geese chose to feed on meadow, and Carex spp. made up the majority of their diet in 2017/2018 when there was more low-quantity/high-quality food. Compared with the globally vulnerable Lesser white-fronted geese, the larger-sized Bean geese seemed to be less susceptible to winter food shortages and exhibited more stable responses. We concluded that the food quality-quantity condition was the external factor influencing the geese responses, while morphological and physiological traits could be the internal factors causing different responses between the two species. This study enhanced the understanding of the influence that habitat change exerts on herbivorous geese in their wintering site in the context of the Three Gorges Dam operation. We suggested that regulating hydrological regime was important in terms of wetland management and species conservation.

Literature type: Scientific

Journal: Ecology and Evolution

Volume: 10 , Pages: 5281-5292.

DOI: 10.1002/ece3.6272

Language: English

External Link:

Download:

Full reference: Pingyang, Z., Ye-ai, Z., Yonghong, X., Siqi, Z., Xinsheng, C., Feng, L., Zhengmiao, D., Hong, Z. & Wei, T. 2020. Hydrology-driven responses of herbivorous geese in relation to changes in food quantity and quality. Ecology and Evolution 10: 5281-5292. https://www.dx.doi.org/10.1002/ece3.6272

Keywords: Bean goose, diet, Dongting Lake, wetland, food shortage, habitat selection, China

Abstract:

East Dongting Lake is a Ramsar site and a particularly important wintering ground for herbivorous geese along the East Asian‐Australasian Flyway. The operation of the Three Gorges Dam has changed the water regime and has a significant impact on wetland ecosystems downstream. We studied the responses of two sympatric herbivorous goose species, the Lesser white‐fronted goose Anser erythropus and Bean goose Anser fabalis, to habitat change by investigating their food conditions, habitat selection, and diet composition in the wintering periods of 2016/2017 and 2017/2018, which had early and late water recession, respectively. It was expected that the contrasting water regimes would result in different food conditions and geese responses. The results showed that the food quality and quantity differed significantly between winters. As responses to the high‐quantity/low‐quality food during 2016/2017, more geese switched to feeding on mudflat and exploited plants such as dicotyledons and moss. The tall swards of Carex spp. (dominant plants in the meadow) that developed during the first growing season decreased the food accessibility during the second growing season and hindered the exploitation of newly generated shoots by the geese, which was further confirmed by our clipping control experiment. Nearly all the geese chose to feed on meadow, and Carex spp. made up the majority of their diet in 2017/2018 when there was more low‐quantity/high‐quality food. Compared with the globally vulnerable Lesser white‐fronted geese, the larger‐sized Bean geese seemed to be less susceptible to winter food shortages and exhibited more stable responses. We concluded that the food quality–quantity condition was the external factor influencing the geese responses, while morphological and physiological traits could be the internal factors causing different responses between the two species. This study enhanced the understanding of the influence that habitat change exerts on herbivorous geese in their wintering site in the context of the Three Gorges Dam operation. We suggested that regulating hydrological regime was important in terms of wetland management and species conservation.

Literature type: Scientific

Journal: Microbiology Open

Volume: 9 , Pages: e1037

DOI: 10.1002/mbo3.1037

Language: English

External Link:

Download:

Full reference: Liu, G., Gong, Z., & Li, Q. 2020. Variations in gut bacterial communities between lesser white-fronted geese wintering at Caizi and Shengjin lakes in China. Microbiology Open 9: e1037 https://www.dx.doi.org/10.1002/mbo3.1037

Keywords: 16S rRNA gene, gut bacterial community, variation, China

Abstract:

The avian gut microbiota plays an important role in shaping the health of its host. However, knowledge of gut bacteria in birds lags behind that of other animals. In this study, we investigated the gut bacterial communities of lesser white-fronted geese (Anser erythropus) wintering at Shengjin Lake and Caizi Lake, China, using high-throughput sequencing (Illumina MiSeq). Altogether, 1,053,624 high-quality sequences and 4,405 operational taxonomic units (OTUs) were acquired from 30 fecal samples (15 per lake). The OTUs represented eight phyla and 17 classes from the Caizi Lake samples and seven phyla and 16 classes from the Shengjin Lake samples. Firmicutes, Proteobacteria, Actinobacteria, and Bacteroidetes were the dominant phyla. The spatial distance and the Chao1, Simpson, and Shannon indices showed that the alpha diversity differed significantly between the samples from both lakes. The phylogenetic tree and heatmap analyses showed that all the Caizi Lake samples were clustered together and all the Shengjin Lake samples were clustered together. These findings suggest that diet may be an important driver of gut microbial community structure in the birds from each lake, and the obvious differentiation in their gut microbial structures may indicate that the bacteria are highly sensitive to food sources at both lakes.

Literature type: Thesis

Language: Chinese (Mandarin) (In Chinese with English abstract and legends)

Download:

Full reference: Ao, P. 2020. Migration strategies and conservation of two large-bodied Anatidae species in East Asia. , Master thesis, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences. 105 pp.

Keywords: Satellite tracking, Migration strategy, Land use, Conservation status, China, Yangtze River, Dongting Lake, Poyang Lake, Shengjin Lake

Abstract:

The East Asian-Australasian Flyway (EAAF) is the most threatened flyway in the world. China is located in the center of the EAAF where more than one million Anatidae waterbirds winter every year. With the economic development in China, the loss of wetland has resulted in the declining waterfowl diversity and abundance. In order to conserve the waterfowl population and their habitats in China, it is urgent to define the distribution of key species, determine the distribution of key species and obtain the population estimates and historical changes, the location, land use and conservation status of key habitats. Based on satellite tracking, remote sensing data, field survey, ringing resightings, literature review and expert knowledge, we studied the Whooper Swan Cygnus cygnus, a common species, and the Lesser White-fronted Goose Anser erythropus, a global threatened species. The main results are: Satellite tracking, field survey, ringing resightings, literature review and expert knowledge found the East Asian populations of Whooper Swans summered from Yenisei River in the west to Anadyr River in the East, south to the border between China and Mongolia, and wintered in Xinjiang, Gansu, Qinghai, Beijing, middle and lower reaches of Yellow River in China, South Korea and Japan. The Whooper Swans that summered in central and western Mongolia, wintered in China; swans that summered in eastern Mongolia, wintered in China and South Korea; and swans that summered in Far East Russia, wintered in Japan. The East Asian population of Whooper Swans was estimated as 57,700, which increased compared to that in 2011 (42,000-47,000 individuals). Eight key wintering sites were found in Xinjiang, Qinghai, Henan and Shandong in China, six in the coastal and inland wetlands in South Korea and 14 in Hokkaido, Miyagi, and Iwate counties in Japan. Satellite tracking, ringing resightings and remote sensing data identified five wintering areas of Whooper Swans that summered in western Mongolia, namely, Xinjiang (12%), Gansu-Qinghai (16%), Henan-Shanxi-Shaanxi (51%), Beijing (2%), Shandong (19%), from west to east. The population growth may be related to the artificial food of two largest wintering areas (Henan-Shanxi-Shaanxi and Shandong). Tracked swans mainly used water in autumn, winter and summer (82% in autumn, 74% in winter and 62% in summer), and cultivated land (64%) in spring. 47% of the GPS fixes were in protected areas in summer, higher than those in winter (35%), spring (0%) and autumn (26%). The mean migration duration in spring was 21 days (range March 1 - April 15), and in autumn it was 14 days (range October 3 - November 13). At the same time, it is found that the conservation proportion in spring was 0. Therefore, it is suggested to strengthen the conservation of important stopover sites of the Whooper Swan in the bend of the Yellow River. The migration speed in spring was slower than that in autumn, due to more stopover sites and longer stopover duration in spring, which does not support the classic migration theory which claims that spring migration should be faster than autumn migration. Satellite tracking, field survey, literature review and expert knowledge found that the East Asian Lesser White-fronted Geese that summered from the Anabas River in the west to the Anadyr River in the east, and to the Far East Taiga in the south, wintered in the middle and lower Yangtze River in China, South Korea and Japan. The East Asian population of Lesser White-fronted Geese was estimated as 4,200, which declined compared to that in 2015 (16,000 individuals). East Dongting Lake in Hunan Province is the most important wintering site for Lesser White-fronted Geese, followed by Poyang Lake in Jiangxi Province and Caizi Lake in Anhui Province, and one key wintering site in Miyagi County in Japan. Satellite tracking and remote sensing data found that the major wintering sites of the tracked Lesser White-fronted Geese were Dongting Lake (50%), Poyang Lake (24%) and Shengjin Lake (18%) in China, and they summered in the Arctic tundra of Russia and Far East Taiga. The tracked geese mainly used cultivated land (52% in spring and 45% in autumn), tundra in summer (63%) and wetland (66%) in winter. 87% of the GPS fixes were in protected areas in winter, higher than that in spring (37%), autumn (28%) and summer (7%). The breeding area were located in the less populated Arctic tundra, although the proportion in protected area in summer was low. The Lesser White-fronted Goose was more concentrated in nature reserves during the wintering period, thus the conservation proportion in wintering area is high. Dongting Lake is the largest wintering site. However, its hydrological changes resulted in the decrease of food, degradation of habitats, and might have led to the decrease of population. Therefore, it is suggested to restore and maintain of the natural hydrological process of the wintering habitat of geese. At the same time, the conservation proportion in spring and autumn was relatively low, so it is suggested to strengthen the conserve of Northeast Plain in China, the main stopover sites in spring and autumn. The migration speed of Lesser White-fronted Geese in spring was slower than that in autumn, mainly due to the longer stopover duration in spring, which does not support the classic migration theory. Both the Whooper Swan and the Lesser White-fronted Goose are large-bodied Anatidae waterbirds in EAAF. The overall conservation proportion of the Lesser White-fronted Goose is higher than Whooper Swan, but the number decreased, which may be related to its unique requirement of food and habitat. The Lesser White-fronted Goose was affected by the decrease of food resources caused by the hydrological change of the Yangtze River, while the swan was affected by local conservation measures. Therefore, we suggest conservation strategies for these two species that faced different conservation challenge: the key point for the conservation of the Lesser White-fronted Geese is the restoration and maintenance of the natural hydrological process in the wintering area, and that of the Whooper Swan is to conserve and restore the key natural habitat and reduce the dependence of the swan on artificial food.

Literature type: Scientific

Journal: International journal of environmental research and public health

Volume: 16 , Pages: 1147

DOI: 10.3390/ijerph16071147

Language: English

External Link:

Download:

Full reference: Lei, J., Jia, Y., Zuo, A., Zeng, Q., Shi, L., Zhou, Y., Zhang, H., Lu, C., Lei, G., & Wen, L. 2019. Bird Satellite Tracking Revealed Critical Protection Gaps in East Asian-Australasian Flyway. International journal of environmental research and public health 16: 1147 https://www.dx.doi.org/10.3390/ijerph16071147

Keywords: migration route, stopover, gps tracking, utilization distribution, Croplands, Northeast China Plains,

Abstract:

Most migratory birds depend on stopover sites, which are essential for refueling during migration and affect their population dynamics. In the East Asian–Australasian Flyway (EAAF), however, the stopover ecology of migratory waterfowl is severely under-studied. The knowledge gaps regarding the timing, intensity and duration of stopover site usages prevent the development of effective and full annual cycle conservation strategies for migratory waterfowl in EAAF. In this study, we obtained a total of 33,493 relocations and visualized 33 completed spring migratory paths of five geese species using satellite tracking devices. We delineated 2,192,823 ha as the key stopover sites along the migration routes and found that croplands were the largest land use type within the stopover sites, followed by wetlands and natural grasslands (62.94%, 17.86% and 15.48% respectively). We further identified the conservation gaps by overlapping the stopover sites with the World Database on Protected Areas (PA). The results showed that only 15.63% (or 342,757 ha) of the stopover sites are covered by the current PA network. Our findings fulfil some key knowledge gaps for the conservation of the migratory waterbirds along the EAAF, thus enabling an integrative conservation strategy for migratory water birds in the flyway.

Literature type: Scientific

Journal: Freshwater biology

Volume: 64 , Pages: 1183-1195.

DOI: 10.1111/fwb.13294

Language: English

Full reference: Jialin, L., Yifei, J., Yuyu, W., Guangchun, L., Cai, L., Neil, S., & Li, W. 2019. Behavioural plasticity and trophic niche shift: How wintering geese respond to habitat alteration. Freshwater biology 64: 1183-1195. https://www.dx.doi.org/10.1111/fwb.13294

Keywords: behavioural response, hydrological regimes, trophic niche width, trophic position, wintering habitats, China

Abstract:

1. The accelerated rate of human-induced environmental change poses a significant challenge for wildlife. The ability of wild animals to adapt to environmental changes has important consequences for their fitness, survival, and reproduction. Behavioural flexibility, an immediate adjustment of behaviour in response to environmental variability, may be particularly important for coping with anthropogenic change. The main aim of this study was to quantify the response of two wintering goose species (bean goose Anser fabalis and lesser white-fronted goose Anser erythropus) to poor habitat condition at population level by studying foraging behaviour. In addition, we tested whether behavioural plasticity could alter trophic niche. 2. We characterised foraging behaviours and calculated daily home range (HR) of the geese using global positioning system tracking data. We calculated standard ellipse areas to quantify niche width using the δ13C and δ15N values of individual geese. We linked behavioural plasticity with habitat quality using ANCOVA (analysis of covariance) models. We also tested the correlation between standard ellipse areas and HR using ANCOVA model. 3. We found significant differences in geese foraging behaviours between years in their daily foraging area, travel distance and speed, and turning angle. Specifically, the birds increased their foraging area to satisfy their daily energy intake requirement in response to poor habitat conditions. They flew more sinuously and travelled faster and longer distances on a daily basis. For the endangered lesser white-fronted goose, all behaviour variables were associated with habitat quality. For bean goose, only HR and turning angle were correlated with habitat quality. The birds, especially the lesser white-fronted goose, may have had a higher trophic position under poor conditions. 4. Our findings indicate that wintering geese showed a high degree of behavioural plasticity. However, more active foraging behaviours under poor habitat condition did not lead to a broader trophic niche. Habitat availability could be responsible to the divergent responses of foraging HR and isotopic niche to human-induced environmental change. Therefore, maintaining natural hydrological regimes during the critical period (i.e. September–November) to ensure that quality food

Literature type: Scientific

Journal: International Journal of Environmental Research and Public Health

Volume: 16 , Pages: 1147.

DOI: 10.3390/ijerph16071147

Language: English

External Link:

Download:

Full reference: Jialin, L., Yifei, J., Aojie, Z., Qing, Z., Inlu, S., Yan, Z., Hong Z., Cai, L., Guangchun, L. & Li W. 2019. Bird satellite tracking revealed critical protection gaps in East Asian–Australasian flyway. International Journal of Environmental Research and Public Health 16: 1147. https://www.dx.doi.org/10.3390/ijerph16071147

Keywords: migration route, stopover, utilization distribution, Croplands, Northeast China Plains, Bohai Bay

Abstract:

Most migratory birds depend on stopover sites, which are essential for refueling during migration and affect their population dynamics. In the East Asian–Australasian Flyway (EAAF), however, the stopover ecology of migratory waterfowl is severely under-studied. The knowledge gaps regarding the timing, intensity and duration of stopover site usages prevent the development of effective and full annual cycle conservation strategies for migratory waterfowl in EAAF. In this study, we obtained a total of 33,493 relocations and visualized 33 completed spring migratory paths of five geese species using satellite tracking devices. We delineated 2,192,823 ha as the key stopover sites along the migration routes and found that croplands were the largest land use type within the stopover sites, followed by wetlands and natural grasslands (62.94%, 17.86% and 15.48% respectively). We further identified the conservation gaps by overlapping the stopover sites with the World Database on Protected Areas (PA). The results showed that only 15.63% (or 342,757 ha) of the stopover sites are covered by the current PA network. Our findings fulfil some key knowledge gaps for the conservation of the migratory waterbirds along the EAAF, thus enabling an integrative conservation strategy for migratory water birds in the flyway.

Literature type: Scientific

Journal: Ibis

Volume: 160 , Pages: 703-705.

DOI: 10.1111/ibi.12605

Language: English

Full reference: Zhao, Q, Wang, X., Cao, L. & Fox, A.D. 2018. Why Chinese wintering geese hesitate to exploit farmland. Ibis 160: 703-705. https://www.dx.doi.org/10.1111/ibi.12605

Keywords: China, farmland feeding, habitat shift, human, disturbance, Yangtze River, habitat loss, population trends

Number of results: 41