Literature type: Scientific
Journal: Ornis Hungarica
Volume: 28 , Pages: 28–48.
Language:
English
(In English with Hungarian summary)
Full reference: Zuban, I., Vilkov, V., Kalashnikov, M., Zhadan, K. & Bisseneva, A. 2020. The results of spring monitoring on the status of geese populations in the North Kazakhstan Region during 2011-2018. Ornis Hungarica 28: 28–48. https://www.dx.doi.org/10.2478/orhu-2020-0003
Keywords: monitoring, Kazakhstan, Northern Kazakhstan, spring staging
Abstract:
The article presents the results of monitoring studies on the population dynamics of goose species at one of the largest stopover sites in Northern Kazakhstan during the springs of 2011–2018. Comparative analysis of the phenological phases at the beginning and end of migration over a 50 year period is conducted and changes in timing of migration for the studied groups are established. Data on the number of flocks at various stages of the migration process are presented. Authors revealed characteristics of the distribution of birds in the directions of migration through the region associated with the presence of various migration strategies. Based on the distribution and number of geese in the region for rest and feeding, key zones with characteristics of their natural and anthropogenic state were identified. It has been established that water bodies and large areas have optimal conditions for rest and replenishment of energy reserves for the birds.
Literature type: Scientific
Journal: Ecology and Evolution
Volume: 10 , Pages: 5281-5292.
DOI: 10.1002/ece3.6272
Language:
English
Full reference: Pingyang, Z., Ye-ai, Z., Yonghong, X., Siqi, Z., Xinsheng, C., Feng, L., Zhengmiao, D., Hong, Z. & Wei, T. 2020. Hydrology-driven responses of herbivorous geese in relation to changes in food quantity and quality. Ecology and Evolution 10: 5281-5292. https://www.dx.doi.org/10.1002/ece3.6272
Keywords: Bean goose, diet, Dongting Lake, wetland, food shortage, habitat selection, China
Abstract:
East Dongting Lake is a Ramsar site and a particularly important wintering ground for herbivorous geese along the East Asian‐Australasian Flyway. The operation of the Three Gorges Dam has changed the water regime and has a significant impact on wetland ecosystems downstream. We studied the responses of two sympatric herbivorous goose species, the Lesser white‐fronted goose Anser erythropus and Bean goose Anser fabalis, to habitat change by investigating their food conditions, habitat selection, and diet composition in the wintering periods of 2016/2017 and 2017/2018, which had early and late water recession, respectively. It was expected that the contrasting water regimes would result in different food conditions and geese responses. The results showed that the food quality and quantity differed significantly between winters. As responses to the high‐quantity/low‐quality food during 2016/2017, more geese switched to feeding on mudflat and exploited plants such as dicotyledons and moss. The tall swards of Carex spp. (dominant plants in the meadow) that developed during the first growing season decreased the food accessibility during the second growing season and hindered the exploitation of newly generated shoots by the geese, which was further confirmed by our clipping control experiment. Nearly all the geese chose to feed on meadow, and Carex spp. made up the majority of their diet in 2017/2018 when there was more low‐quantity/high‐quality food. Compared with the globally vulnerable Lesser white‐fronted geese, the larger‐sized Bean geese seemed to be less susceptible to winter food shortages and exhibited more stable responses. We concluded that the food quality–quantity condition was the external factor influencing the geese responses, while morphological and physiological traits could be the internal factors causing different responses between the two species. This study enhanced the understanding of the influence that habitat change exerts on herbivorous geese in their wintering site in the context of the Three Gorges Dam operation. We suggested that regulating hydrological regime was important in terms of wetland management and species conservation.
Literature type: Scientific
Journal: Freshwater biology
Volume: 64 , Pages: 1183-1195.
DOI: 10.1111/fwb.13294
Language:
English
Full reference: Jialin, L., Yifei, J., Yuyu, W., Guangchun, L., Cai, L., Neil, S., & Li, W. 2019. Behavioural plasticity and trophic niche shift: How wintering geese respond to habitat alteration. Freshwater biology 64: 1183-1195. https://www.dx.doi.org/10.1111/fwb.13294
Keywords: behavioural response, hydrological regimes, trophic niche width, trophic position, wintering habitats, China
Abstract:
1. The accelerated rate of human-induced environmental change poses a significant challenge for wildlife. The ability of wild animals to adapt to environmental changes has important consequences for their fitness, survival, and reproduction. Behavioural flexibility, an immediate adjustment of behaviour in response to environmental variability, may be particularly important for coping with anthropogenic change. The main aim of this study was to quantify the response of two wintering goose species (bean goose Anser fabalis and lesser white-fronted goose Anser erythropus) to poor habitat condition at population level by studying foraging behaviour. In addition, we tested whether behavioural plasticity could alter trophic niche. 2. We characterised foraging behaviours and calculated daily home range (HR) of the geese using global positioning system tracking data. We calculated standard ellipse areas to quantify niche width using the δ13C and δ15N values of individual geese. We linked behavioural plasticity with habitat quality using ANCOVA (analysis of covariance) models. We also tested the correlation between standard ellipse areas and HR using ANCOVA model. 3. We found significant differences in geese foraging behaviours between years in their daily foraging area, travel distance and speed, and turning angle. Specifically, the birds increased their foraging area to satisfy their daily energy intake requirement in response to poor habitat conditions. They flew more sinuously and travelled faster and longer distances on a daily basis. For the endangered lesser white-fronted goose, all behaviour variables were associated with habitat quality. For bean goose, only HR and turning angle were correlated with habitat quality. The birds, especially the lesser white-fronted goose, may have had a higher trophic position under poor conditions. 4. Our findings indicate that wintering geese showed a high degree of behavioural plasticity. However, more active foraging behaviours under poor habitat condition did not lead to a broader trophic niche. Habitat availability could be responsible to the divergent responses of foraging HR and isotopic niche to human-induced environmental change. Therefore, maintaining natural hydrological regimes during the critical period (i.e. September–November) to ensure that quality food
Literature type: Scientific
Journal: Ibis
Volume: 160 , Pages: 703-705.
DOI: 10.1111/ibi.12605
Language:
English
Full reference: Zhao, Q, Wang, X., Cao, L. & Fox, A.D. 2018. Why Chinese wintering geese hesitate to exploit farmland. Ibis 160: 703-705. https://www.dx.doi.org/10.1111/ibi.12605
Keywords: China, farmland feeding, habitat shift, human, disturbance, Yangtze River, habitat loss, population trends
Literature type: Report
Language:
English
Full reference: Jones, I.L., Whytock, R.C. & Bunnefeld, N. 2018. Assessing motivations for the illegal killing of Lesser White-fronted Geese at key sites in Kazakhstan. , AEWA Lesser White-fronted Goose International Working Group Report Series No. 6, Bonn, Germany.
Keywords: conservation, hunting, Kazakhstan, illegal hunting, Questionnaires, Unmatched Count Technique
Literature type: Scientific
Journal: Molecular Phylogenetics and Evolution
Volume: 101 , Pages: 303-313.
DOI: 10.1016/j.ympev.2016.05.021
Language:
English
Full reference: Ottenburghs, J., Megens, H.-J., Kraus, R.H.S., Madsen, O., van Hooft, P., van Wieren, S.E., Crooijmans, R.P.M.A., Ydenberg, R.C., Groenen, M.A.M. & Prins, H.H.T. 2016. A tree of geese: A phylogenomic perspective on the evolutionary history of True Geese. Molecular Phylogenetics and Evolution 101: 303-313. https://www.dx.doi.org/10.1016/j.ympev.2016.05.021
Keywords: Consensus, Concatenation, Gene tree, Hybridization, Incomplete lineage sorting, Species tree
Abstract:
Phylogenetic incongruence can be caused by analytical shortcomings or can be the result of biological processes, such as hybridization, incomplete lineage sorting and gene duplication. Differentiation between these causes of incongruence is essential to unravel complex speciation and diversification events. The phylogeny of the True Geese (tribe Anserini, Anatidae, Anseriformes) was, until now, contentious, i.e., the phylogenetic relationships and the timing of divergence between the different goose species could not be fully resolved. We sequenced nineteen goose genomes (representing seventeen species of which three subspecies of the Brent Goose, Branta bernicla) and used an exon-based phylogenomic approach (41,736 exons, representing 5887 genes) to unravel the evolutionary history of this bird group. We thereby provide general guidance on the combination of whole genome evolutionary analyses and analytical tools for such cases where previous attempts to resolve the phylogenetic history of several taxa could not be unravelled. Identical topologies were obtained using either a concatenation (based upon an alignment of 6,630,626 base pairs) or a coalescent-based consensus method. Two major lineages, corresponding to the genera Anser and Branta, were strongly supported. Within the Branta lineage, the White-cheeked Geese form a well-supported sub-lineage that is sister to the Red-breasted Goose (Branta ruficollis). In addition, two main clades of Anser species could be identified, the White Geese and the Grey Geese. The results from the consensus method suggest that the diversification of the genus Anser is heavily influenced by rapid speciation and by hybridization, which may explain the failure of previous studies to resolve the phylogenetic relationships within this genus. The majority of speciation events took place in the late Pliocene and early Pleistocene (between 4 and 2 million years ago), conceivably driven by a global cooling trend that led to the establishment of a circumpolar tundra belt and the emergence of temperate grasslands. Our approach will be a fruitful strategy for resolving many other complex evolutionary histories at the level of genera, species, and subspecies.
Literature type: Report
Language:
English
Full reference: Morozov, V.V., Øien, I.J. & Aarvak, T. 2016. Monitoring and satellite tracking of Lesser White-fronted Geese from the Russian European tundra in Russia in 2015. , NOF-BirdLife Norway - Report 2-2016. 13pp.
Keywords: Polar Urals, Bolshezemelskaya Tundra, Bolshaya Rogovaya River, Kazakhstan, Uzbekistan, Turkmenistan, Russia, production
Abstract:
Fieldwork was carried out between 6th June and 10th August 2015 at the western macro-slope of the Polar Urals and the eastern Bolshezemelskaya Tundra, Russia. In the Bolshaya Rogovaya River basin area, only one LWfG pair with five juveniles was located. However, the numbers of Bean Geese were high, with 92 adults and at least 58 juveniles in the same area. In the Polar Urals, Lesser White-fronted Geese were found on the rivers or watershed lakes in June, but repeated observations carried out in July and early August did not confirm the presence of LWfG, but also here many broods of Bean Goose were observed. Altogether, three broods of LWfG were found in one flock. One adult male was caught by a hoop net during fieldwork and equipped with a solar powered GPS satellite transmitter. This male LWfG migrated southwards along the Ob river valley, through Kazakhstan, but instead of crossing over to the western side of the Caspian Sea as expected, he was tracked to Uzbekistan and Turkmenistan. This is the first time that a Lesser White-fronted Goose has been tracked to this probably very important wintering area which is situated in the border area between Uzbekistan and Turkmenistan. By 7th January 2016 the bird was still alive and with a functioning transmitter.
Literature type: Report
Language:
English
Full reference: Morozov, V.V, Sultanov, E. & Mammadov, A. 2016. Survey of Lesser White-fronted Geese in Nakhchivan, Azerbaijan, in January 2015. , NOF-BirdLife Norway - Report 3-2016. 12pp.
Keywords: Occurrence, survey, Azerbaijan, Iran, Nakhchivan, wintering
Abstract:
We carried out a field survey of wintering Lesser White-fronted Geese in the Aras water reservoir in the Nakhchivan Autonomic Republic in the period 20th-24th January 2015. We also surveyed the adjoining flood-plain area of the Aras River valley within Sadarak district near the border of Iran and Turkey in the same period. Only four small flocks of Lesser White-fronted Geese were located, of which the largest being 80 individuals. These observations together with tracking and location data from satellite transmitter tagged birds proves that the whole area of the Aras River valley from the border of Turkey to the Aras reservoir dam, serves as a wintering ground for the species. Considering their high importance, the wetlands of the Aras reservoir and the Sadarak district should be designated as a strictly protected area.The survey also covered numbers and distribution of other waterbird species in the area. Within the Azerbaijan part, more than 25000 individuals of waterfowl and shorebirds overwinter, which qualifies this important area to the list of important RAMSAR wetlands.
Literature type: Scientific
Journal: Bird Conservation International
Volume: 26 , Pages: 397-417.
DOI: 10.1017/S0959270915000386
Language:
English
Full reference: Jia, Q., Koyama, K., Choi, C.-Y., Kim, H.-J., Cao, L., Liu, G. & Fox, A. 2016. Population estimates and geographical distributions of swans and geese in East Asia based on counts during the non-breeding season. Bird Conservation International 26: 397-417. https://www.dx.doi.org/10.1017/S0959270915000386
Keywords: Population size, survey, South Korea, Japan, China,
Abstract:
For the first time, we estimated the population sizes of two swan species and four goose species from observations during the non-breeding period in East Asia. Based on combined counts from South Korea, Japan and China, we estimated the total abundance of these species as follows: 42,000–47,000 Whooper Swans Cygnus cygnus; 99,000–141,000 Tundra Swans C. columbianus bewickii; 56,000–98,000 Swan Geese Anser cygnoides; 157,000–194,000 Bean Geese A. fabalis; 231,000–283,000 Greater White-fronted Geese A. albifrons; and 14,000–19,000 Lesser White-fronted Geese A. erythropus. While the count data from Korea and Japan provide a good reflection of numbers present, there remain gaps in the coverage in China, which particularly affect the precision of the estimates for Bean, Greater and Lesser White-fronted Geese as well as Tundra Swans. Lack of subspecies distinction of Bean Geese in China until recently also limits our ability to determine the true status of A. f. middendorffii there, but all indications suggest this population numbers around 18,000 individuals and is in need of urgent attention. The small, highly concentrated and declining numbers of Lesser White-fronted Geese give concern for this species, as do the major declines in Greater White-fronted Geese in China (in contrast to numbers in Japan and Korea, considered to be a separate flyway). In the absence of any demographic data, it is impossible to interpret the causes of these changes in abundance. Improved monitoring, including demographic and tracking studies are required to provide the necessary information to retain populations in favourable conservation status.
Literature type: Scientific
Journal: Ecological Engineering
Volume: 88 , Pages: 90–98.
DOI: 10.1016/j.ecoleng.2015.12.009
Language:
English
Full reference: Guan, L., Lei, J., Zuo, A., Zhang, H., Lei, G. & Wen, L. 2016. Optimizing the timing of water level recession for conservation of wintering geese in Dongting Lake, China. Ecological Engineering 88: 90–98. https://www.dx.doi.org/10.1016/j.ecoleng.2015.12.009
Keywords: Habitat quality, Water recession, Generalised linear mixed modelling (GLMM), Three Gorges Dam, (TGD), Enhanced vegetation index (EVI), Geese, China, Dong Tinge lake, wintering
Abstract:
Habitat suitability and selection are key concepts in wildlife management, especially in protection of critical habitat and conservation of sensitive and endangered populations. In recent years, many approaches have been developed to link habitat suitability with animal occurrence and abundance. These approaches typically involve identifying existing habitats, defining habitat quality metrics, and estimating the association between animal occurrence/abundance and measured habitat metrics. In this study, we first tested whether we could measure habitat quality at Dongting Lake, China, one of the most important migratory waterbird wintering sites in the East Asian Flyway, for a group of Anatidae using metrics derived from the freely available multi-temporal MODIS vegetation index. The results showed that goose counts could be sufficiently modelled using mean winter season EVI (enhanced vegetation index) and habitat size computed from EVI time series and topographic wetness index (TWI). We then quantified the relationships between hydrological regimes and the habitat quality metrics. Our findings suggested that the timing of optimal water draw down should be early to mid October to ensure quality food sources for the wintering geese in Dongting Lake. The results have direct conservation implications as water recession timing is highly manageable through water flow regulation.
Number of results: 104